
Analyzing Unicode Text with Regular Expressions

Analyzing Unicode Text with Regular Expressions
Andy Heninger

IBM Corporation

heninger@us.ibm.com

Abstract
For decades now, Regular Expressions have been used in the analysis of text data, for
searching for key words, for extracting out desired fields or substrings from larger bodies
of text and in editing or transforming text.

This paper will discuss the application of regular expressions to Unicode text data,
including the approaches and extensions that are required to work effectively with the
very large Unicode character repertoire. The emphasis is on Unicode specifically, not on
the features of regular expressions in general, which is a subject about which entire books
can, and have, been written.

A Very Quick Look At Regular Expressions

Although this paper will primarily be dealing with Unicode related questions, a regular
expression language is still needed for discussion and for use in examples Here is a
minimalist one, smaller than most real implementations, but sufficient for the purpose.

26th Internationalization and Unicode Conference 1 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Item Definition
. Match any single character
[range or set of characters] Match any character of a class or set of characters. Set

expressions will be described later.
* Match 0 or more occurrences of the preceding item.
+ Match 1 or more occurrences of the preceding item.
Literal Characters Match themselves.
\udddd
\Udddddddd

Unicode Code Point Values, 16 or 32 bits.

(sub-expression) Grouping. (abc)*, for example.
a|b|c Alternation. Match any one of 'a' or 'b' or 'c'.

And, to make things more concrete, here are a few samples of simple expressions

Expression Description
Hello Match or select appearances of the word “Hello” in the

target text.

aa[a-z]* Match any word beginning with “aa” and consisting of
only the lower case letters a-z. (Just what is in the range
[a-z] is another question.)

.* Match everything.

A large number of implementations and specifications for regular expressions exist, in
editors, in programming languages and libraries, in stand-alone search tools, in query
languages, and elsewhere. While the basics are pretty much the same among them,
differences do exist, especially in the areas of newer or more advanced features, including
the level of Unicode support.

Implementations with a reasonable level of Unicode support include Perl, Java (JDK 1.4
or newer), Microsoft .NET and IBM's ICU4C library.

The Evolution of Character Ranges, from [a-z] to [\p{Letter}]
Access to character properties from regular expression character classes is the the single
most important key to accessing the power of Unicode from regular expressions. Let's
begin with a very brief history of the use of character sets, or ranges.

26th Internationalization and Unicode Conference 2 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

In the beginning, regular expressions were assumed to work with text in ASCII, or in
some similar legacy character set. A simple expression to match a word might look
something like this

[a-zA-Z]+

which is an RE that matches one or more contiguous letters. This only works, more or
less, for English. It doesn't work for other languages using letters with accents or other
marks (niño, bébé), or for those using non-latin alphabets, such as Greek, Russian or
Arabic.

POSIX Character Classes
The first steps towards improving the situation, predating Unicode, came from the
POSIX definition of regular expressions. It introduced several named classes of
characters, as shown in this table:

[:alnum:] [:cntrl:] [:lower:] [:space:] [:alpha:] [:digit:]
[:xdigit:] [:print:] [:upper:] [:blank:] [:graph:] [:punct:]

Updating our first expression to use the alpha character class rather than the a-to-z range,

[:alpha:]+

will take care of recognizing niño or bébé. And, if the implementation supports the text's
character encoding, non-Latin languages will be supported as well.

The POSIX specification for regular expressions is character encoding agnostic. It does
not define a precise set of characters to be included in the character classes, and indeed,
without knowing the character encoding, it could not. Implementations must make
appropriate character class assignments for each encoding or code page that is supported,
including Unicode.

The Unicode consortium, in
http://www.unicode.org/reports/tr18/#Compatibility_Properties, provides recommended
mappings for each of the POSIX character classes in terms of Unicode character
properties. These provide for some compatibility when moving between POSIX and
Unicode environments, however working directly with Unicode character properties
provides for a far more expressive and powerful search.

Collation Ranges
POSIX also introduced the idea of collation, or natural language ordering for character
ranges in regular expressions. The idea is that range of characters [a-z] would not be

26th Internationalization and Unicode Conference 3 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

interpreted based on the numerical character code values for 'a' and 'z', but instead be
based on a dictionary sort order. The range [a-z] then includes all representable
characters that sort between 'a' and 'z', and will match our Spanish niña and French bébé
There are, however, some surprising aspects to this approach.

In collation sort ordering, uppercase letters sort before lower case, that is, the ordering of
the letters of the English alphabet is AaBbCcDd...YyZz Thus, [a-z] matches
A[aBbCcDd...YyZz], including uppercase B-Z, but not uppercase A. Surprising. The
collation based range [a-z] will include some accented characters, but the exact details
depend on the locale and the implementation, and can be difficult to determine.

Although the intent was certainly noble, the non-obvious implications of collation based
range expressions have limited the spread of this approach. It does not appear in Perl, or
in implementations tracing their ancestry in some way to Perl, a group that includes most
packages supporting Unicode character properties.

Unicode Property based Character Classes
With Unicode text data, Unicode Character Properties make possible a much more
complete and capable system for categorizing and selecting characters. For our original
example, we can replace the expression

[a-zA-Z]+

 with this

[\p{Alphabetic}]+

Note that the set of letters [\p{Alphabetic}] contains many more characters than just the
Latin letters [a-zA-Z], including accented Latin letters, letters from other alphabets, and
some marks and signs that are normally treated as if they were letters.

The set can be restricted to include Latin letters only in this way:

[\p{Alphabetic}&\p{Script=Latin}]+

Unicode defines more than 70 character properties; here are some that are likely to
especially useful in Regular Expressions.

Property Name Description
General_Category Categorizes all characters as Letters, Numbers,

Separators, Punctuation, Marks, Symbols or Other.
Also defines sub-groups within each of these main
groups, e.g. Letter, uppercase.

26th Internationalization and Unicode Conference 4 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Property Name Description
Script The script with which a character is associated. Latin,

Greek, Cyrillic, Han, Hebrew, etc.

Alphabetic Letters plus additional letter-like marks.

Uppercase Uppercase characters. Consists mostly of letters, but
there are a few other characters with separate upper
case forms that are not letters. Note that many
characters are not cased – are neither upper nor lower.

Lowercase Lowercase characters.

White_Space White space characters

NonCharacter_Code_Point Code points that are explicitly defined as illegal for the
encoding of characters.

The syntax for using a Unicode property in a character set expression typically has this
form (originally from Perl):

[\p{property_name = property value}]

For example,

 [\p{General_Category=Currency_Symbol}]

Because the Unicode General Category is probably the most commonly referenced
property in set expressions, the syntax allows the property name to be omitted, like this:

 [\p{Currency_Symbol}]

Each General Category value has both a short and a long name, allowing us to shorten the
set expression still further, to

[\p{Sc}]

The properties Alphabetic, Uppercase, Lowercase, White_Space and
NonCharacter_Code_Point are boolean – either true or false. For these, only the property
name is needed; the value of “true” is implied.

[\p{Alphabetic}]

and

[\p{Alphabetic=TRUE}]

are equivalent.

26th Internationalization and Unicode Conference 5 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

For reference, here is a list of the Unicode General Category property values, with a brief
description and/or representative characters for each.

Long Name Abbr Examples or Description
Letter L All letters. ABC áçî ΓΔΠ

Uppercase Letter Lu ABC ΏΣΔ

Lowercase Letter Ll abc

Titlecase Letter Lt A small number of composite characters containing both
an initial capital and following small letter. \u01f2, Dz

Modifier Letter Lm Small signs that are generally used to indicate
modifications of a previous letter.

Other Letter Lo Letters that do not distinguish case. Includes Chinese,
Japanese, Korean ideographs.

Mark M All Marks

Non-Spacing Mark Mn Marks that combine with a preceding base character to
form a single combined character.
\u0300, combing grave accent
\u0307, combining diaeresis

Spacing
Combining Mark

Mc Combining Marks that display after their base character,
rather than over/under it.
\u094c, Devanagari vowel sign
\u0d46, Malayalam vowel sign E

Enclosing Mark Me Non-spacing marks that display as completely enclosing
their base character.
\u20dd, combining enclosing circle
\u0489, combining Cyrillic millions sign

Number N All Numbers

Decimal Digit
Number

Nd 123 ۱۲۳۴

Letter Number Nl Roman Numerals, and a few other relatively rare forms.

26th Internationalization and Unicode Conference 6 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Long Name Abbr Examples or Description
Other Number No Superscripts, Subscripts, fractions, other non-decimal-digit

values encoded as single characters.
\u0bf0, Tamil number ten
\u0f2a, Tibetan digit half one
\u2154, vulgar fraction two thirds

Punctuation P All Punctuation

Connector
Punctuation

Pc \u005f, _ (ASCII underscore)
\u203f, undertie
and a few more.

Dash Punctuation Pd \u002d, hyphen-minus
\u2014, em dash
\u301c, wave dash
and a variety of other dashes and hyphens.

Open Punctuation Ps ([{
and a long list of additional left brackets and parentheses.

Close Punctuation Pe)] }
and a long list of additional right brackets and parentheses.

Initial Punctuation Pi Opening quotation marks, many forms.

Final Punctuation Pf Closing quotation marks, many forms.

Other Punctuation Po ¿ ¡ ' $ % & * , . ; : / · ! ?
and many more, from many scripts.

Symbol S All Symbols

Math Symbol Sm + < = > | ÷ ∑ ∕ ∩ ∫
and many more

Currency Symbol Sc $ ¢ £ ¤ ¥
and many more

Modifier Symbol Sk Spacing (non-combining) forms of accents, other
diacritics.

26th Internationalization and Unicode Conference 7 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Long Name Abbr Examples or Description
Other Symbol So A grab-bag

00a7, section sign
00ae, registered sign
00b0, degree sign
0482, Cyrillic thousands sign
060e, Arabic poetic verse sign
09fa, Bengali isshar
and many more.

Separator Z All Separators

Space Separator Zs Spaces. 18 in all, including the classic ASCII \u0020. Not
the same as “white space”, does not include tabs, new
lines, etc.

Line Separator Zl Includes exactly one character,
\u2028, Line Separator

Carriage Return and New Line are categorized as Control
characters, Cc.

Paragraph
Separator

Zp Includes exactly one character,
\u2029, paragraph separator

Other C All other characters

Control Cc ASCII control codes, characters in the ranges
\u0000-\u001f and
\u0080-\u009f

Format Cf Soft hyphens, bidi controls, zero-width spaces, joiners,
and more.

Surrogate Cs The range \ud800-\udbff
An occurrence of characters within the surrogate range
indicates a problem – either unpaired surrogates in the
input text, or an implementation that does not handle
supplementary characters.

Private Use Co The ranges
\ue000-\ue8ff and
\U000f0000 - \U000ffffd
\U00100000 - \U0010fffd
Reserved for application specific use.

Not Assigned Cn Unassigned characters.

26th Internationalization and Unicode Conference 8 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Scripts and Blocks
The script of a character is the alphabet that the character belongs to. Being a Unicode
character property, script is accessible to regular expressions in the same way as any other
property. For example, text containing Hebrew characters can be selected with this
expression:

[\p{script=Hebrew}]+

With some implementations, the expression can be shortened to the script name alone,
omitting the “script =”.

[\p{Hebrew}]+

This does not conflict with the similar short form for General Category because there is
no overlap in the names – there is no script with the same name as a General Category
value.

Here is a slightly extended expression that matches entire lines that contain any Hebrew
characters:

.*[\p{Hebrew}].*

The “.*”s match all characters following or preceding the Hebrew on the line.

Script is not the same as Language
Regular expressions can identify text written with a particular script, but in most cases
this is not the same as identifying the language of the text. The Latin script, to take the
obvious case, is used for English, French, German, Spanish, etc. Cyrillic is used for
Russian, Serbian, Bulgarian and more. Arabic, Hausa, Kashmiri, Kazak, Kurdish,
Kyrghyz, Pashto, Farsi, Sindhi, Tatar, Turkish, Uyghur and Urdu are all written with the
Arabic script.

Determining the language of a sample of text is well beyond what can easily be
accomplished with regular expressions alone.

Characters shared between Scripts
Many characters are shared between scripts, including numbers, punctuation, symbols,
formatting and control characters. All of these shared characters have been assigned the
script value of “Common.”

26th Internationalization and Unicode Conference 9 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

A related class of shared characters are non-spacing marks that combine with a base
character to form what is logically a single character. Combining accent marks are an
example. The script property of these characters is “Inherited”, and they are considered to
have the same script as the base character that precedes them.

Taking Common and Inherited script characters into account, here is a regular expression
to match a range of text written in the Cyrillic script:

[\p{Common}\p{Inherited}]*([\p{Cyrillic}][\p{Common}\p{Inherited}]*)+

This will match one or more Cyrillic characters (the '+' at the end of the expression),
together with any number of intervening, preceding or following Common or Inherited
characters.

Blocks
Block is a Unicode property that is related to script, but not quite as useful. Because some
regular expression implementations make the Block property available, but not the Script,
it is important to understand the differences.

A block is a contiguous range of Unicode characters (code points) that has been
designated for a particular use, often for encoding a script.

Block property and script names do overlap. Some examples of the property names are
shown in the chart below; the full list is available at
http://www.unicode.org/Public/UNIDATA/Blocks.txt and

http://www.unicode.org/Public/UNIDATA/Scripts.txt

Block Script
Basic Latin Latin
Latin-1 Supplement
Latin Extended-A
Latin Extended-B
Greek and Coptic Greek
Hebrew Hebrew
Arabic Arabic

The block property has some limitations that usually make the script property a better
choice if it is available. The problems with relying on Blocks included

1. Blocks are simply ranges, and may contain reserved code points.

26th Internationalization and Unicode Conference 10 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

2. The characters from an alphabet or writing system may be spread between several
blocks.

3. A single block may contain characters that are used in several scripts. There is
nothing corresponding to the “Common” and “Inherited” script properties to enable
the identification of these shared characters.

Despite these limitations, the block property can still be useful in identifying text that
contains characters from desired scripts.

More Set Operations

Lose the Brackets
When specifying a class of characters from a single Unicode property, the [brackets]
around the set expression may be omitted. Thus, these two expressions

[\p{Letter}]+
\p{Letter}+

are equivalent.

Negated Sets
The set of characters not having a property can be specified by \P{property} Again, the
following two expressions are equivalent:

[^\p{Letter}]
\P{Letter}

The “^” in a [^set] expression complements or inverts the set. This “^” notation dates
back to the prehistory of regular expressions; thus [^a-z] matches everything except the
lower case letters a through z.

Unions and Intersections
A set specifying two or more properties contains the union of the characters matched by
the properties. Thus the expression

[\p{Lowercase_Letter}\p{UpperCase_Letter}]

will match all upper or lower case letters. It differs from \p{Letter} in that it does not
match un-cased letters such has Han ideographs.

26th Internationalization and Unicode Conference 11 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

In this case, the [brackets] on the set expression are definitely required; without them, the
expression

\p{Lowercase_Letter}\p{UpperCase_Letter}

matches a sequence of two characters, a lower case letter followed by an upper case letter.

Intersection, specified with an “&” makes it possible to define sets of characters for
which two or more properties must be true. For example,

[\p{Cyrillic}&\p{UpperCase_Letter}]

would match only uppercase Cyrillic letters.

Caution: The set intersection operator is “&&” in Java regular expressions, “&” in ICU
regular expressions, and is not available in Perl.

Code Points, Code Units, UTF 8/16/32
When we say that a regular expression matches a “character” from some input text, what
does that really mean?

The answer is that the basic unit of matching is a Unicode “Code Point”, which is an
abstract character represented by an integer in the range from 0 to 0x10ffff. Code points
can have different physical representations in memory, and it is the responsibility of the
implementation to ensure that any underlying byte or word values are transformed to code
point character values before any matching operations are carried out.

Viewed from the opposite side, it is not possible, or at least shouldn't be possible, to write
a regular expression that would match half of a UTF-16 surrogate pair, or a single byte
from a multiple-byte UTF-8 sequence.

Under normal circumstances (no unpaired surrogates or malformed UTF-8 sequences), it
should not be possible for an application to determine, based on any regular expression
behavior, what underlying storage format was used for input text.

26th Internationalization and Unicode Conference 12 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Normalization
Some characters can have alternative Unicode representations.

For example, the character Ñ can be represented either as the single code point
\u00d1, Latin capital letter N with tilde

Or by the sequence of two code points,
\u004e, Latin capital letter N
\u0303, combining tilde

These are two different normalization forms for Ñ. Both are perfectly valid. Which is
chosen can definitely affect the match results obtained with regular expressions.

- Searching for a plain 'N' will match the second (decomposed) form, but not the first.

- Searching for \p{Non Spacing Mark} will match the second form (the tilde, not the
N), but not the first

- A single '.' (match any character) in a pattern will consume the entire composed
form, but only half of the decomposed form.

There are a few different approaches to dealing with these problems

- Design the regular expression patterns in such a way that the results obtained are
independent of the normalization form. This can work well if the expressions are
being used to parse apart text based on fixed keywords or punctuation characters,
with the intervening text being skipped over, or perhaps captured, but otherwise not
analyzed.

- Have independent knowledge, based on the source of the data or the design of the
system, that the text to be analyzed will arrive with a known normalization form,
and design the regular expression patterns accordingly.

- Normalize the data in a separate step.

- For regular expression implementations that support it, specify the normalization,
or Canonical Equivalence option. Note that this option is available in relatively few
implementations. For Java, this option will force matching to occur as if the text
were in decomposed form.

Here is an example of the first approach of creating a pattern that is independent of the
Unicode normalization form of the data. This pattern will scan for the content of a
particular element from a string with XML-like syntax.

“<LastName>(.*?)</LastName >”

26th Internationalization and Unicode Conference 13 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

The markup tags being matched have only one normalization form and can be easily
matched with literal strings. The text between the tags, which with Perl compatible
expressions will be captured and available to the application, can be in any normalization
form.

When matching words that may themselves appear in more than one normalization form,
such as

“Möller|Mönch|Mörk”
it's probably better to choose one of the other approaches and put the incoming data into a
known form before doing the match.

Line Endings, New Lines
Most regular expression implementations, by default, restrict the range of a pattern match
to a single line of text. Because of this, it is important to know how lines are terminated;
that is, which characters or sequences separate one line from another.

(Perversely enough, in most Regular Expression packages, the option to alter the default
behavior to allow a match to proceed across a line boundaries into multiple lines is
“single line mode”.)

The set of Unicode line endings is larger than that of older legacy character sets. The line
ending characters recognized by regular expressions are

\u000A Line Feed
\u000C Form Feed
\u000D Carriage Return
\u0085 Next Line (NEL)
\u2028 Line Separator
\u2029 Paragraph Separator

and the sequence
\u000D \u000A

When a match can cross line boundaries, a “.” will match the Carriage Return / Line Feed
sequence as if it were a single character.

With the implementations available today, there is no single pattern meta-character for
matching any of the allowed line endings. There should be, but there isn't.

Case Insensitive Matches
All regular expression implementations provide the ability to do a case insensitive, or
loose, pattern matches.

Full Unicode caseless matching, as described in Section 3.13 of the Unicode Standard, is

26th Internationalization and Unicode Conference 14 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

a relatively complicated operation. With full caseless matching it is possible for a single
lower case letter to match two upper case letters, with the most famous example being the
German character ß, which is equivalent to “ss” and which upper-cases to “SS”.

The Unicode-enabled regular expression packages that are available today provide a more
limited form of caseless matching, not handling situations where changing the case of a
string could change its length.

Grapheme Clusters
A grapheme cluster is the name given to what an end user would consider to be a
character when looking at displayed or printed text. A grapheme cluster may be
composed of more than one Unicode code point.

The simplest examples of multi-codepoint grapheme clusters are letters with accents or
other diacritical marks, such as our Spanish ñ that appeared in earlier examples. For ñ,
and other letters that are commonly used in European languages, single code point forms
of the characters do exist, but for many other characters a multi-codepoint representation
is required.

Unicode-aware regular expression pattern languages have an additional meta-character,
often \X, that will match a complete grapheme cluster, or test whether the current match
position is at the boundary of a grapheme cluster.

There are some differences between implementations - not all have the definition of a
grapheme cluster quite right, or even implement this at all - so it is important to check the
documentation of the specific package being used.

Word Boundaries (\b and \B)
Regular Expressions patterns have traditionally provided operators to test whether the
current position in the text is a word boundary (\b) or not (\B). The exact definition of
what constitutes a word for this purpose is usually pretty simple, typically a contiguous
run of “word” characters.

Here is an example of traditional RE word boundary positions

Hello there. G'day 123.456
 ^ ^^ ^ ^^^ ^^ ^^ ^
The Unicode Consortium has published a more sophisticated set of rules for determining
word boundaries (UAX 29, Text Boundaries). The Unicode definitions do a better job of

26th Internationalization and Unicode Conference 15 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

not breaking apart contractions or numbers containing decimal points, and they take a
fundamentally different approach to non-word characters, such as punctuation or white
space. The concept is to have word boundaries around any piece of text that one would
expect to be matched by a “match whole words only” option in a word processor.

With the Unicode definitions, the word boundary positions are

Hello there. G'day 123.456
 ^ ^^ ^^^^ ^^ ^

This is different enough from the conventional RE behavior and expectations for \b that
the default has not been changed. Unicode behavior may be available as an option,
however. Check the docs for your implementation.

Summary
Regular expressions are a powerful tool for analyzing and extracting information from
Unicode text data. Many implementations now have good support for Unicode, including
access to character properties, case insensitive matching, grapheme and word boundaries
and normalization, all of which greatly increase the power and flexibility of regular
expression pattern matching.

References
References to additional sources of information may be the most important part of this
paper. The whole topic of using regular expressions with Unicode text is far too big to be
covered in any detail in a single paper.

Mastering Regular Expressions, Second Edition. Jeffrey Friedl, O'Reilly, 2002
Mastering Regular Expressions is an essential reference for anyone doing substantial
work with regular expressions. It provides clear and detailed descriptions of how regular
expression pattern matching really works and of all the pattern operators and meta
characters available. Unicode is touched on briefly, but the main emphasis is on general
regular expression behavior.

26th Internationalization and Unicode Conference 16 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Unicode Regular Expressions, Unicode Technical Standard #18.
http://www.unicode.org/reports/tr18/

This document from the Unicode Consortium describes the set of features that should be
provided by regular expression implementations that wish to claim to support Unicode.
Three levels of conformance are defined. Basic, or level 1, support provides the
minimum set of features needed for regular expressions to work effectively with Unicode
text. Level 2 provides for additional features, either more advanced and/or harder to
implement. Level 3 adds the ability to tailor matching behavior based on Locale or
Language.

The implementations available today are mostly at Level 1, sometimes with an
occasional level 2 feature.

While intended primarily for those designing or implementing regular expression
packages, the document will still be of interest to anyone curious about the future
directions of regular expressions, or in evaluating the feature set of an existing
implementation.

The Unicode Character Database, or UCD
http://www.unicode.org/Public/UNIDATA/UCD.html
A guide to the content and format of the Unicode Character Database, a set of files that
define the character properties and their mappings onto the set of Unicode characters.

Although the sheer mass of information included here can be overwhelming at first,
anyone doing much work with Unicode character properties will eventually find
themselves referring to this set of data.

Unicode Script and Block Names.
These are the UCD files that list all available Script and Block names, and of are
particular interest because these two character properties are so useful in regular
expressions.
http://www.unicode.org/Public/UNIDATA/Blocks.txt
http://www.unicode.org/Public/UNIDATA/Scripts.txt

The Unicode Standard 4.0, The Unicode Consortium, Addison-Wesley, 2003
Also available on line, http://www.unicode.org/versions/Unicode4.0.1/
Section 3.5 and all of Chapter 4 contain essential definitions and descriptions of character
properties.

26th Internationalization and Unicode Conference 17 San Jose, CA, September 2004

Analyzing Unicode Text with Regular Expressions

Implementations of Unicode Regular Expressions
Regular Expression packages with good Unicode support are readily available. While
none of the packages listed here provides every feature mentioned in this paper, they all
implement most of them.

Perl Regular Expressions
http://www.perldoc.com/perl5.8.4/pod/perlre.html
Perl is a scripting language that includes integrated regular expressions. The innovations
in RE pattern features and matching behavior pioneered by Perl have gone on to become
defacto standards, and are widely copied.

IBM ICU4C
http://oss.software.ibm.com/icu/userguide/regexp.html
A C / C++ Unicode support library, including Perl compatible regular expressions. The
API is loosely based on the Java JDK classes for regular expressions.

JAVA
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/package-summary.html
With version 1.4, Sun added a regular expression package to the JDK. The pattern
features are based on Perl.

Microsoft .NET
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconCOMRegularExpressions.asp
The .NET Framework regular expression classes are part of the base class library and can
be used with any language or tool that targets the common language runtime. Perl
compatible.

XML Schema
http://www.w3.org/TR/xmlschema-2/#regexs
A specification, not an implementation. XML Schemas can use regular expression
matches as one of the mechanisms for validating the contents of XML documents. Once
again, the regular expression features are based on Perl.

Multiple implementations are available, including Xerces XML from the Apache
Software Foundation
http://xml.apache.org/xerces-c/index.html

26th Internationalization and Unicode Conference 18 San Jose, CA, September 2004

